Final Report Electrical Depths

Electrical Depth | Tiered Classroom

Spatial Description:

The Tiered Classroom is located in the middle of the South Tower on the second floor and is a simple rectangular plan. Four 4" curved tiers increase the elevation in the back of the room 16". The room is wider (in the direction of the rows) than it is long (the direction the speaker will give lectures). The teacher will be located at the front of the room with two exits on either side. The ceiling mimics the tiered seating and will surely affect acoustic performance in the space. The ceiling has four sections, front, two middle, and a back; these are symmetrical if looking at the side walls. The front panel slants up away from the speaker, the middle two create a "pyramid" and the back slants down from the ceiling to the back of the room. A drop ceiling surrounds these panels and is a few inches lower than their bottom.

List of Activities:

Students will receive lectures which would be presented with the use of white boards and video projectors at the front of the room. The use of laptops to keep notes is possible.

Dimensions:

L x W: 64' x 36'-10" Floor Area: 2256.75 SF Ceiling Height (front): 9'-2" A.F.F. Ceiling Height (back): 7'-10" A.F.F. Approx. Ceiling Height (center): 8'-6" A.F.F.

Below in Figure 3, can be seen the existing panelboard HLP2S2 which serves the Tiered Classroom Lighting; circuit 9 highlighted.

PANE	L ID:	HLP2S	2		MAIN:	100A-3	3P		VOLTAGE:		480Y/	277V,3	ø,4W
SECTI	ON:	1 OF 1	1		BUS RATING	225A-	3P		LOAD (KVA):				
POLES	S:	30			AISC RATING 14,000 MOUNTING:					SURFACE			
NOTE	S:		1.0				82	10					
	СКТ	r/BKR		LOAD D	ESCRIPTION	LOAD KVA	LOAD KVA	LOAD DE	SCRIPTION		скт/	′BKR	
#	POLE	TRIP AMPS	NOTES							NOTES	TRIP AMPS	POLE	#
1	1	20		EXIT SIGNS		1.50	2.37	LTG-REF ST	ACKS #A203		20	1	2
3	1	20		LTG-REF STACKS #A203		.80	1.40	LTG-STU	DY ROOMS		20	1	4
5	1	20		LTG-REF STACKS #A203		.70	2.50	LTG-CALSS	RMS/OFFICES		20	1	6
7	1	20		LTG-CORRIDOR		.60	1.50		ASSRMS 1.1&2		20	1	8
9	1	20		LTG-TIER	ED CLASSRM	2.10	2 23	LTG-DISC	USS AREA		20	1	10
11	1	20		ltg—lib s	TAFF WORKRM	2.34	2.16	LTG-LIB	CIR. AREA		20	1	12
13	1	20									20	1	14
15	1	20	j.	S	PARE			SP.	ARE		20	1	16
17	1	20	1	S	PARE		3	SP	ARE		20	1	18
19	1	20		S	PARE			SP	ARE		20	1	20
21	1	20		S	PARE			SP	ARE		20	1	22
23	1	°_0		SPACE &	PROVISIONS			SPACE &	PROVISIONS		-	1	24
25	1	·		SPACE &	PROVISIONS	1		SPACE &	PROVISIONS		-	1	26
27	1			SPACE &	PROVISIONS			SPACE &	PROVISIONS		-	1	28
29	1			SPACE &	PROVISIONS			SPACE &	PROVISIONS			1	30

Table 2 Existing Panelboard Schedule serving Tiered Classroom

Bradley Sisenwain	Final Report	Gateway Community College 79
Lighting Electrical Option	Electrical Depths	New Haven, CT

Taking into account the new luminaires and the new loads associated with their ballast, I calculated the total load (in kVA) for the room. Seen below in Table 3

20 A cct (12.8A allowable) @ 277 volt		Volts	Amps	Total VA
KVA	C1	277	0.12	797.76
3.5456	C2	277	0.12	797.76
(= 20 * .8 * .8 * 277)	C3	277	0.12	232.68
	C4	277	0.07	426.58
	C5	277	0.13	1296.36
			Total kVA	3.55114

Table 3 Total kVA for new Tiered Classroom Circuit (9)

Once found, I inserted these new loads into the supplied panelboard worksheet. This can be seen in Table 4 below.

	VOLTAGE: 480Y/277V,3PH,4W SIZE/TYPE BUS: 225A			PANEL T			-	2	MIN. C/B AIC: 10K				
SIZE/TYPE BUS: SIZE/TYPE MAIN:				IEL LOCATI EL MOUNTI		1000				OPTIONS:			
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	А	в	С	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION	
Exit Signs		1425	20A/1P	1				2	20A/1P	2252		LTG-ref stack #a20	
LTG-ref stack #a203		760	20A/1P	3		*		4	20A/1P	1330		LTG Study Room	
LTG-ref stack #a203		665	20A/1P	5			*	6	20A/1P	3420		LTG Corridor	
TC Classrmal offices		2275	204/40	7	*			8	20A/1P	1425		LTG Class A201	
LTG Tiered Class		3420	20A/1P	9		*		10	20A/1P	2119		LTG Discuss Are	
LTO LID Stall WORKIN		2223	ZUPVIP				*	12	20A/1P	2052		LTG LIB Circ Are	
		0	20A/1P	13	*			14	20A/1P	0			
Spare		0	20A/1P	15		*		16	20A/1P	0		Spare	
Spare		0	20A/1P	17			*	18	20A/1P	0		Spare	
Spare		0	20A/1P	19	*			20	20A/1P	0		Spare	
Spare		0	20A/1P	21		*		22	20A/1P	0		Spare	
		0	20A/1P	23			*	24	20A/1P	0			
		0	20A/1P	25	*			26	20A/1P	0			
		0	20A/1P	27		*		28	20A/1P	0			
		0	20A/1P	29			*	30	20A/1P	0			
		0	20A/1P	31	•			32	20A/1P	0			
		0	20A/1P	33		*		34	20A/1P	0			
		0	20A/1P	35			*	36	20A/1P	0			
		0	20A/1P	37	*			38	20A/1P	0			
		0	20A/1P	39		*		40	20A/1P	0			
		0	20A/1P	41			*	42	20A/1P	0			
ONNECTED LOAD (KW	v) - A	7.48								TOTAL DESIGN	LOAD (KW)	28	
ONNECTED LOAD (KW										POWER FACTO	-	0	
ONNECTED LOAD (KW		8.36								FOWER FACIO	7	0.	

 Table 4 Redesigned Panelboard Schedule

Adding in 25% spare capacity to the redesigned panelboard load (amps) I the new amps would be $36 \times 1.25 = 45$ A. This would then be sized up to a 50A C/B. Sizes for branch circuiting and feeders can be seen below.

PANEL	CCT	MAX AMPACITY	TYPE	# AND BRANCH CCT SIZE	# AND GROUND SIZE	CONDUIT SIZE
HLP2S2	9	20	THWN	(2) # 12 AWG	(1) # 8 AWG	3/4" EMT
EEDER SIZE						
DANCI	CB RATING (AMPS)	TYPE	# AND SIZE OF CCC	# AND GROUND SIZE	CONDUIT SIZE	
PANEL						

Final Report **Electrical Depths**

Electrical Depth | Library

Spatial Description:

The Library has a "quartered circle" plan that extends up to the fourth floor. It has two floors, the first which connects to computer stations and the stacks housed by the library. The second connects to more stacks, service desk, and also has an opening in the center where people can see through to the two story height space on the floor above. A curving staircase mimics the curve of the exterior curtain wall which extends the whole height of the expansive room. Louvers have been added to reduce direct sun penetration.

List of Activities:

Used in addition to other parts of the library, the reading room is home to other stacks located on the first floor. Like its name implies, the space is primarily used for reading, studying and various homework activities, but also has computer stations positioned around the stairs on the second floor.

Below in Table 10, can be seen the existing panelboard HLPIS2 which serves the first floor of the Library.

PANEL II	ID:	HLP1S	2		MAIN:	100A-3	SP		VOLTAGE:		480Y/	′277V , 3	ø,4W
SECTION	1:	1 OF ⁻	1		BUS RATING	225A-3	3P		LOAD (KVA):		22.3KVA		
POLES:		30			AISC RATING	14,000		MOUNTING:	SURFACE				
NOTES:													
	CKT/BKR LOAD DESCRIPT			ESCRIPTION	LOAD KVA	LOAD KVA	LOAD DE	SCRIPTION		СКТ/	′BKR		
# P	POLE	TRIP AMPS	NOTES							NOTES	TRIP AMPS	POLE	#
1	1	20		EXIT	EXIT SIGNS		.32	LTG-S	TAIR A		20	1	2
3	1	20		LTG-	.32	.32	LTG-S	TAIR C		20	1	4	
5	1	20		LTG-	.32	.32	LTG-S	TAIR J		20	1	6	
7	1	20		LTG-CORRIDOR #A100.1		97	1.58	LTG-COPY	RM #A101.11		20	1	8
9	1	20		LTG-LIBRARY		.87	.96	LTG-LIB.	STACKS		20	1	10
11	1	20		LTG-LIB. STACKS		2.68	2.37	LTG-CULIN	ARY ARTS		20	1	12
13	1	20		LTG-LIB.	PERIODICALS	2.24	2.72	LTG-SSF0	#A102.16		20	1	14
15	1	20			A103	1.56	2.50	LTG-AERO	BICS #A108		20	1	16
17	1	20		S	PARE			SP	ARE		20	1	18
19	1	20		S	PARE			SP	ARE		20	1	20
21	1	20		S	PARE			SP	ARE		20	1	22
23	1	20		S	PARE			SP	ARE		20	1	24
25	1	Ι		SPACE &	PROVISIONS			SPACE &	PROVISIONS		-	1	26
27	1	-		SPACE &	PROVISIONS			SPACE &	PROVISIONS		-	1	28
	1	_		SPACE &	PROVISIONS			SPACE &	PROVISIONS		_	1	30

Table 10 As-Designed HLPIS2

Lighting Electrical Option

Electrical Depths

New Haven, CT

PANEL	ID:	HLP3S	2		MAIN:	100A-3	P		VOLTAGE:		480Y/	′277V , 3	\$ø,4W
SECTIO	DN:	1 OF ⁻	1		BUS RATING	225A			LOAD (KVA)	:			
POLES	:	42			AISC RATING	14,000			MOUNTING:	SURFACE			
NOTES	:												
	CKT/BKR LOAD D			ESCRIPTION	LOAD KVA	LOAD KVA	LOAD DE	SCRIPTION		CKT/	/BKR		
#	POLE	TRIP AMPS	NOTES						NOTES	TRIP AMPS	POLE	#	
1	1	20		LTG-LAB #	1.00	1.50	LTG-UNDE	R CABINET		20	1	2	
3	1	20		LTG-CLAS	1.54	1.00	LTG-PAIN #A		20	1	4		
5	1	20		LTG-ART M	TG-ART MAC LAB #A303			LTG-CORRIE	OOR #B300.1		20	1	6
7	1	20		LTG-LIBRARY		1.81	2.60	LT	G—		20	1	8
9	1	20		LTG-	LTG-LIBRARY		.60	LTG-CORRIDOR			20	1	10
11	1	20		LTG-	LIBRARY	3.08	.70	LTG-OPE		20	1	12	
13	1	20		SI	PARE			SP	ARE		20	1	14
15	1	20		S	PARE			SP		20	1	16	
17	1	20		SI	PARE			SP	ARE		20	1	18
19	1	20		SI	PARE			SP	ARE		20	1	20
21	1	-		SPACE &	PROVISIONS			SPACE &	PROVISIONS		-	1	22
23	1	-									-	1	24
25	1	-									-	1	26
27	1	-									-	1	28
29	1	-									-	1	30
				, GENERAL AI IONAL INFORM									

 Table 11 As Designed Panel HLP3S2

On panel HLPIS2, circuits 9 and 13 provide power to the original luminaires specified for the first floor. Circuits 7,9, and 11 on panel HLP3S2 serve the original luminaires on the third floor. After redesigning the new lighting scheme for the space, analyzed the change in power supply and circuits needed. Seen below in Table 1 are the Luminaire types and quantities. I then calculated the circuits that would be needed to serve this space. I applied the following equation to find the total kVA for the Library:

$kVA = (quantity) \times (A max) \times (277 V)$

Bradley Sisenwain Lighting Electrical Option **Final Report** Electrical Depths Gateway Community College 82

New Haven, CT

Maximum amperage needed to run the ballast and a voltage of 277, were used to calculate each luminaire type's associated kVA. These values can be seen below in Table 12.

20 A cct (12.8A allowable) @ 277 volt		Volts	Amps	Total VA
KVA	L1	277	0.67	7052.42
3.5456	L1B	277	0.67	371.18
(= 20 * .8 * .8 * 277)	L2A	277	0.23	573.39
	L2B	277	0.23	573.39
	L2C	277	0.23	509.68
	L3	277	0.23	1911.3
	L4	277	0.12	631.56
	L5	277	0.12	299.16
	L6	277	0.12	465.36
	L7A	277	0.26	216.06
	L7B	277	0.26	216.00
	L7C	277	0.26	216.06
	L8	277	0.26	648.18
	L9A	277	13	600
	L9B	277	13	600
	L9C	277	13	600
		Total	kVA	15.4838
		Minir	num CCTs Needed	5

Table 12 Circuit Quantities for Library

Once found, I inserted these new loads into the supplied panelboard worksheet. Seen below in Table 13.

VOLTAGE: SIZE/TYPE BUS: SIZE/TYPE MAIN:		H,4W	PANEL TAG: HLP1S2 PANEL LOCATION: South Tower PANEL MOUNTING: SURFACE							MIN. C/B AIC: 10K OPTIONS:			
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	А	в	С	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION	
EXIT SIGNS		1425	20A/1P	1	*			2	20A/1P	304		LTG-STAIR A	
LTG-CULINARY ARTS		2252	20A/1P	3		*		4	20A/1P	912		LTG-LIB. STACKS	
LTG-STAIR D		304	20A/1P	5			*	6	20A/1P	304		LTG-STAIR J	
LTG_CORRIDOR #A100.1		922	20A/1P	7	*			8	20A/1P	1501		LTG_COPY ROOM #A101.11	
TG-CHILD DEVELOPMENT #A103		1482	20A/1P	9		*		10	20A/1P	2375		LTG-AEROBICS #A108	
LTG-LIB. STACKS		2546	20A/1P	11			*	12	20A/1P	3489		LTG LIB	
Spare		0	20A/1P	13	*			14	207011	2004		LT0-00F0 #A102.10	
Spare		0	20A/1P	15		*		16	20A/1P	0		Spare	
LTG-STAIR B		304	20A/1P	17			*	18	20A/1P	304		LTG-STAIR C	
-		0	20A/1P	19	*			20	20A/1P	0			
-		0	20A/1P	21		*		22	20A/1P	0		-	
-		0	20A/1P	23			*	24	20A/1P	0			
Spare		0	20A/1P	25	*			26	20A/1P	0		-	
Spare		0	20A/1P	27		*		28	20A/1P	0		Spare	
Spare		0	20A/1P	29			*	30	20A/1P	0		Spare	
Spare		0	20A/1P	31	*		_	32	20A/1P	0		Spare	
		0	20A/1P	33		*		34	20A/1P	0		Spare	
		0	20A/1P	35			*	36	20A/1P	0			
		0	20A/1P	37	*			38	20A/1P	0			
		0	20A/1P	39	_	*	-	40	20A/1P	0			
		0	20A/1P	41			-	42	20A/1P	0			
NNECTED LOAD (KW) - A		6.74								TOTAL DESIGN	LOAD (KW)	25.2	
DNNECTED LOAD (KW) - B		7.02								POWER FACTO	R	0.9	
ONNECTED LOAD (KW) - C		7.25								TOTAL DESIGN		3	

Table 13 Re-designed Panel HLPIS2

Lighting Electrical Option

Electrical Depths

New Haven, CT

		ΡA	ANEL	BOA	A F)	SCH	EDU	LE		
SIZE/TYPE BUS	VOLTAGE: 480Y/277V.3PH.4W SIZE/TYPE BUS: 225A SIZE/TYPE MAIN: 50A/3P C/B					PANEL TAG: HLP3S2 PANEL LOCATION: South Tower PANEL MOUNTING: SURFACE						
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	в	С	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
LTG LAB SCULPTURE #A301		950	20A/1P	1	*		-	2	20A/1P	950		LTG OPEN SPACE
LTG CLASS #A303		1463	20A/1P	3		*	1	4	20A/1P	1425		LTG UNDER CABINET
LTG ART MAC LAB		3040	20A/1P	5			*	6	20A/1P	2945		LTG LIBRARY
LTG LIBRARY		2594	20A/1P	7	^		1	8	20A/1P	2717		LTG LIBRARY
LTG LIBRARY		2907	20A/1P	9		*		10	20A/1P	1045		LIG CORRIDOR #B300.1
LIG CORRIDOR		570	20AVTP	11			*	12	20A/1P	665		LTG OPEN SPACE
		0	20A/1P	13	*			14	20A/1P	0		
		0	20A/1P	15		*		16	20A/1P	0		
		0	20A/1P	17		. 1	*	18	20A/1P	0		
		0	20A/1P	19	*			20	20A/1P	0		
		0	20A/1P	21		*	1	22	20A/1P	0		
Spare		0	20A/1P	23		1	*	24	20A/1P	0		
Spare		0	20A/1P	25	*			26	20A/1P	0		Spare
Spare		0	20A/1P	27		*		28	20A/1P	0		Spare
Spare		0	20A/1P	29			*	30	20A/1P	0		Spare
Spare		0	20A/1P	31	*		1	32	20A/1P	0		Spare
		0	20A/1P	33		•		34	20A/1P	0		Spare
		0	20A/1P	35			*	36	20A/1P	0		
		0	20A/1P	37	*			38	20A/1P	0		
		0	20A/1P	39		*		40	20A/1P	0		
	J	0	20A/1P	41				42	20A/1P	0		
CONNECTED LOAD (KW) - A		7.21								TOTAL DESIGN	LOAD (KW)	25.
ONNECTED LOAD (KW) - B		6.84								POWER FACTO	R	0.
CONNECTED LOAD (KW) - C		7.22								TOTAL DESIGN	LOAD (AMPS)	

Table 14 Re-designed Panel HLP3S2

Sizing for the feeders serving the panels, dedicated branch circuits serving the Library lighting loads, and conduit size can be seen in Table 8 and 9 below. Sizing charts used were from the 2008 National Electric Code (Tables 10 and 11).

WIRE SIZE						
PANEL	CCT	MAX AMPACITY	TYPE	# AND BRANCH CCT SIZE	# AND GROUND SIZE	CONDUIT SIZE
HLPIS2	12	20	THWN	(2) # 12 AWG	(1) # 8 AWG	3/4" EMT
HLP3S2	6	20	THWN	(2) # 12 AWG	(I) # 8 AWG	3/4" EMT
HLP3S2	7	20	THWN	(2) # 12 AWG	(1) # 8 AWG	3/4" EMT
HLP3S2	8	20	THWN	(2) # 12 AWG	(1) # 8 AWG	3/4" EMT
HLP3S2	9	20	THWN	(2) # 12 AWG	(1) # 8 AWG	3/4" EMT

Table 15 Wire and Conduit Size of Branch Circuits

FEEDER SIZE					
PANEL	CB RATING (AMPS)	TYPE	# AND SIZE OF CCC	# AND GROUND SIZE	CONDUIT SIZE
HLP1S2	50	THWN	(4) #8 AWG	(1) # 8 AWG	3/4" EMT
HLP3S2	50	THWN	(4) #8 AWG	(1) # 8 AWG	3/4" EMT

Table 16 Wire and Conduit Size for Feeders

Electrical Depth | Roof Garden

Spatial Description:

Located on the roof of the Reading Lounge, the Roof Garden serves as an escape to the outdoors. The Student Gathering space leads directly to the garden which is on the fourth floor. The students will be greeted by a piece of custom art-work (sculpture). Benches surround round planters that hold trees, which are also surrounded by a pathway that leads around the exterior façade of the lounge below.

List of Activities:

Transition through the space (mostly walking) is the main activity. Others could potentially include reading (books), faceto-face interactions, and computer use.

Dimensions:	
North Wall Length: 73'-2"	Parapet Length: 99'-6"
West Wall Length: 73'-10"	Area: 4319 SF

No panelboard can be located that serves the Roof Garden. Therefore I am theorizing that panel HLP4S2 serves the Roof Garden, mainly due to the close proximity. Below is the current panel layout.

OF 1 2 BKR TRIP NOT 20 20 20 20 20 20 20 20 20 20	ES	BUS RATING AISC RATING DESCRIPTION T SIGNS ATRIUM	225A 14,000 LOAD KVA 1.00 2.60	LOAD KVA 2.38 1.67		LOAD (KVA) MOUNTING: SCRIPTION RM A403 ATRIUM	NOTES	CKT/ TRIP AMPS 20 20		# 2 4
BKR TRIP NOT 20 20 20 20 20	ES	DESCRIPTION	LOAD KVA	KVA 2.38	LTG –	SCRIPTION RM A403	NOTES	CKT/ TRIP AMPS 20	/BKR POLE 1	2
TRIP MPS NOT 20 20 20 20 20	ES	TSIGNS	KVA 1.00	KVA 2.38	LTG –	RM A403	NOTES	TRIP AMPS 20	POLE	2
TRIP MPS NOT 20 20 20 20 20	ES	TSIGNS	KVA 1.00	KVA 2.38	LTG –	RM A403	NOTES	TRIP AMPS 20	POLE	2
20 20 20 20 20 20	EXI						NOTES	AMPS 20	1	2
20 20 20 20									<u> </u>	
20 20	LTG	ATRIUM	2.60	1.67	LTG –	ATRIUM		20	1	4
20										
								20	1	6
20								20	1	8
								20	1	10
20	S	PARE			SP/	ARE		20	1	12
20	S	PARE			SP/	ARE		20	1	14
20	S	PARE			SP/	ARE		20	1	16
20	S	PARE			SP/	ARE		20	1	18
20	s	PARE			SP/	ARE		20	1	20
-	SPACE &	PROVISIONS			SPACE & I	PROVISIONS		-	1	22
-	SPACE &	PROVISIONS			SPACE & F	PROVISIONS		-	1	24
-	SPACE &	PROVISIONS			SPACE & I	PROVISIONS		-	1	26
-	SPACE &	PROVISIONS			SPACE & F	PROVISIONS		-	1	28
-	SPACE &	PROVISIONS			SPACE & I	PROVISIONS		-	1	30
2 2 2	20 20 	00 S 00 S - SPACE & - SPACE &	0 SPARE 0 SPARE - SPACE & PROVISIONS - SPACE & PROVISIONS - SPACE & PROVISIONS - SPACE & PROVISIONS - SPACE & PROVISIONS	00 SPARE 00 SPARE 00 SPARE - SPACE & PROVISIONS - SPACE & PROVISIONS	00 SPARE 00 SPARE 00 SPARE 00 SPARE - SPACE & PROVISIONS - SPACE & PROVISIONS	00 SPARE SP/ 01 SP/ SP/ 02 SP/ SP/ 03 SP/ SP/ 04 SP/ SP/ 05 SP/ SP/ 04 SP/ SP/ 05 SP/ SP/ 04 SP/ SP/ 05 SP/ SP/ 06 SP/ SP/ 07 SP/ SP/ 08 SP/ SP/ 09 SP/ SP/ 09 SP/ SP/ <	OD SPARE SPARE 20 SPACE & PROVISIONS SPACE & PROVISIONS 20 SPACE & PROVISIONS SPACE & PROVISIONS	00 SPARE SPARE 00 SPACE & PROVISIONS SPACE & PROVISIONS 00 SPACE & PROVISIONS SPACE & PROVISIONS 00 SPACE & PROVISIONS SPACE & PROVISIONS 00 SPACE & PROVISIONS SPACE & PROVISIONS	00 SPARE SPARE 20 01 SPACE & PROVISIONS - 01 SPACE & PROVISIONS - 02 SPACE & PROVISIONS SPACE & PROVISIONS 02 SPACE & PROVISIONS SPACE & PROVISIONS 03 SPACE & PROVISIONS - 04 SPACE & PROVISIONS -	00 SPARE SPARE 20 1 20 SPACE & PROVISIONS SPACE & PROVISIONS - 1 20 SPACE & PROVISIONS SPACE & PROVISIONS - 1 20 SPACE & PROVISIONS SPACE & PROVISIONS - 1 20 SPACE & PROVISIONS SPACE & PROVISIONS - 1 20 SPACE & PROVISIONS SPACE & PROVISIONS - 1 20 SPACE & PROVISIONS SPACE & PROVISIONS - 1

Table 17 As-Design Layout for Panel HLP4S2

Please see tables below for lighting power density and circuits needed.

Lighting Electrical Option

Final Report Electrical Depths

New Haven, CT

TRADABLE

Allowable LPD walk <10ft (by Ashrae 90.1):	1 per sq ft	
Area:	1022	
Allowable Watts (by Ashrae 90.1):	511	
Allowable LPD Entrance (by Ashrae 90.1):	30 per ft	
Area:	30	
Allowable Watts (by Ashrae 90.1):	450	
Allowable LPD Overhangs (by Ashrae 90.1):	1.25 per sq ft	
Area:	789	
Allowable Watts (by Ashrae 90.1):	493.125	
Allowable LPD Plazas (by Ashrae 90.1):	0.2 per sq ft	5 per ft
Area:	3019	89.6
Allowable Watts (by Ashrae 90.1):	301.9 OR	336.00

Total Wattage to Consume (not including façade) 1756.025

Luminaire Type	Quantity	Ballast Watts	Total Watts
R1	16	16	256
R2	10	22	220
R3	10	46	460
R4	3	36	108
R5			

Watts to consume 820.03

NOT TRADABLE

Allowable LPD Facade(by Ashrae 90.1):	0.2
Area:	2297
Allowable Watts (by Ashrae 90.1):	229.7

Luminaire Type	Quantity	Ballast Watts	Total Watts	
R5	132.5	1	132.5	
			0	
			0	

Watts to consume

97.2

20 A cct (12.8A allowable) @ 277 volt		Volts	Amps	Total VA
KVA	R1	277	0.36	1595.52
3.5456	R2	277	0.08	221.6
(= 20 * .8 * .8 * 277)	R3	277	0.78	2160.6
99 9022300 3203 90396 192963896198	R4	N	ot Used	
	R5	220	2.525	555.5
		Total	kVA	4.53322
		Need	ed CCTs	2

 Table 18 Roof Garden Lighting Power Density and Circuit Sizing

By using these spreadsheets, I have found that two circuits are needed to supply power to the roof garden. Please see the panel worksheet on the next page for layout of Roof Garden circuits.

85

Electrical Depths

		P	ANEI	вои	A F	ק נ	C	SCH	EDU	LE		
VOLTAGE: 208Y/120V,3PH,4W SIZE/TYPE BUS: 100A SIZE/TYPE MAIN: 100A/3P C/B			PANEL TAG: HLP4S2 PANEL LOCATION: South Tower PANEL MOUNTING: SURFACE					ower			THROUGH LUGS ARD 1L1B	
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	в	С	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
Exit Signs		950	20A/1P	1				2	20A/1P	2470		Ltg Atrium
LIG KIII A405		2201	ZUAMP	3				4	ZUAVIP	1292		Ltg Athum
Ltg Roof Garden		2280	20A/1P	5			*	6	20A/1P	2090		Ltg Roof Garden
0		0	20A/1P	1	1			8	20A/1P	0		0
0	0	0	20A/1P	9		*		10	20A/1P	0		0
0		0	20A/1P	11			*	12	20A/1P	0		0
SPARE		3340	20A/1P	13	*		-	14	20A/1P	3340		SPARE
SPARE		3340	20A/1P	15		*		16	20A/1P	3340		SPARE
SPARE		3340	20A/1P	17			*	18	20A/1P	3340		SPARE
SPARE		3340	20A/1P	19	*			20	20A/1P	3340		SPARE
SPARE		3340	20A/1P	21		*		22	20A/1P	3340		SPARE
SPARE		3340	20A/1P	23			•	24	20A/1P	3340		SPARE
		0	20A/1P	25	*			26	20A/1P	0		
		0	20A/1P	27		*		28	20A/1P	0		
		0	20A/1P	29			•	30	20A/1P	0		
		0	20A/1P	31	*			32	20A/1P	0		
		0	20A/1P	33	-	-		34	20A/1P	0		
		0	20A/1P	35	*		-	36	20A/1P	0		
		0	20A/1P 20A/1P	37 39	-			38 40	20A/1P 20A/1P	0		
		0	20A/1P	41		-	*	40	20A/1P	0		
CONNECTED LOAD) (KW) - A	16.78								TOTAL DESIGN	LOAD (KW)	61.
CONNECTED LOAD		16.91								POWER FACTO		0.9
CONNECTED LOAD		17.73								TOTAL DESIGN		

Table 19 Redesigned Panel HLP4S2

In this panel, I included 10 spare circuits (based on existing panel) and loaded them to 60% (or 12A). I multiplied by 277V and then applied a .95 PF. After totaling the design load to 75 Amps, I then applied a scaling factor of 1.25 for future space. In the end I was able to reduce the panel's main breaker size from 225A to 100A. The associated wire sizes are below.

WIRE SIZE						
PANEL	CCT	MAX AMPACITY	TYPE	# AND BRANCH CCT SIZE	# AND GROUND SIZE	CONDUIT SIZE
HLP4S2	5	20	THWN	(2) # 12 AWG	(1) # 8 A₩G	3/4" EMT
HLP4S2	6	20	THWN	(2) # 12 AWG	(1) # 8 AWG	3/4" EMT

FEEDER SIZE					
PANEL	CB RATING (AMPS)	TYPE	# AND SIZE OF CCC	# AND GROUND SIZE	CONDUIT SIZE
HLP4S2	100	THWN	(4) #3 AWG	(1) # 6 AWG	1-1/4" EMT

Table 20 Wire and Feeder sizing for HLP4S2

Final Report Electrical Depths

Electrical Depth | Student Gathering

Spatial Description:

This space provides the main distribution outlet in Gateway. It runs North to South and extends from the first level up to the fourth with and bridges cutting though the main central space. A walkway borders on the East side of the atrium on every floor. Openings extend from stairs and large landings up to the ceiling above, which seemingly hovers in the air, as light streams in from East and West clerestories which extend the length of the space. Over George St. (which splits the North and South Towers) a walkway joins portions of the Student Gathering space. This space is a continuous climb in through the middle of the building and ends when you reach the top of the Reading Lounge; it's Roof Garden.

List of Activities:

Transition through the space (mostly walking) is the main activity through this space. Others could potentially include reading (books and vertically posted materials), face-to-face interactions, or computer use.

Dimensions:

Length (North Tower): 92'-8" Length (walkway): 76'-5" Length (South Tower): 261' Width (NT): 19'-6" Width (walkway): 27' Width (start/end ST): 24'-10" / 38'-7" Area (approx. total): 15867 SF

In the Student Gathering Atrium, three panels serve the electric lighting loads. Two of these panels (HLP4SI and HLP4S2) are located in the south tower of GCC. Panel HLP4SN is located in the north tower. The re-designed loads can be seen below for my current lighting design.

Lighting Electrical Option

Lighting Power Density Calculation

	Total
Corridor Area:	6055
Allowable Corridor LPD (by Ashrae 90.1):	0.5
	Total
Atrium Area:	8018.5
Allowable Atrium (1-3) LPD (by Ashrae 90.1):	1.3
Allowable Atrium (+3) LPD (by Ashrae 90.1):	1.3
Total Allowable Watts (by Ashrae 90.1):	20423.19

Designed	Wattana	Concumption	

Luminaire Type	Quantity Balla	st Watts	Total Watts	
51	22	283	6226.00	
52	115	32.1	3691.5	
\$3	50	35.1	2106	
S4 (70 WMH)	4	95	380	
S5 (175 MH)	4	198	792	
S6 (250 MH)	12	284	3408	
\$7	54	14.3	772.2	
88			0	
39			0	
SIO			0	
			17375.70	PAS

Watts to consume

7047.72

20 A cct (12.8A allowable) 🛛 277 volt		Volts	Amps	Total VA
KVA	SI	277	0.6	3656.4
3.5456	S2	277	0.12	3822.6
(= 20 * .8 * .8 * 277)	\$3	277	0.042	581.3
	S4	277	0.7	775.E
	S5	277	0.76	842.08
	S6	277	1.03	3423.72
	S7			772.2
		Tota	l kVA	13.8743
		Need	led CCTs	1

Table 21 Re-designed loads and Circuit Analysis

The branch wire and feeder sizes are as follows:

New Haven, CT

PANEL	ID:	HLP4S	1		MAIN:	100A-3	SP		VOLTAGE:		480Y/	277V,3	ø,4W
SECTIO	DN:	1 OF 1	1		BUS RATING	225A			LOAD (KVA)	:			
POLES	:	30			AISC RATING	C RATING 14,000 MOUNTING:					SURFA		
NOTES	:												
	СКТ	/BKR		LOAD D	ESCRIPTION	LOAD KVA	LOAD KVA	LOAD DE	SCRIPTION		скт/	/BKR	
#	POLE	TRIP	NOTES							NOTES	TRIP	POLE	#
1	1	20		LTG-	ATRIUM	3.01	1.67	LTG-/	ATRIUM		20	1	2
3	1	20		LTG-SKILLS	LAB #D402.3	2.37	1.54		02.7		20	1	4
5	1	20		LTG-CORR	IDOR #D400.1	.50			-		20	1	6
7	1	20									20	1	8
9	1	20									20	1	10
11	1	20									20	1	12
13	1	20		S	PARE			SP	ARE		20	1	14
15	1	20		SI	PARE			SP	ARE		20	1	16
17	1	20		S	PARE			SP	ARE		20	1	18
19	1	20		S	PARE			SP	ARE		20	1	20
21	1	-		SPACE &	PROVISIONS			SPACE &	PROVISIONS		-	1	22
23	1	-		SPACE &	PROVISIONS			SPACE &	PROVISIONS		-	1	24
25	1	-		SPACE &	PROVISIONS			SPACE &	PROVISIONS		-	1	26
27	1	-		SPACE &	PROVISIONS			SPACE &	PROVISIONS		-	1	28
29	1	-		SPACE &	PROVISIONS			SPACE &	PROVISIONS		-	1	30
				, GENERAL A									

Table 22 As-designed panel HLP4S1

PANEL	ID:	HLP4S	2		MAIN:	100A-3	SP		VOLTAGE:		480Y/	277V , 3	iø,4W	
SECTIO	DN:	1 OF 1	1		BUS RATING	225A			LOAD (KVA)	:				
POLES	à:	42			AISC RATING	IG 14.000 MOUNTING:						SURFACE		
NOTES	S:													
	СКІ	/BKR		LOAD D	ESCRIPTION	LOAD KVA	LOAD KVA	LOAD DE	SCRIPTION		СКТ/	BKR		
#	POLE	TRIP AMPS	NOTES							NOTES	TRIP AMPS	POLE	#	
1	1	20		FXI	SIGNS	1.00	2.38	ITG -	RM A403		20	1	2	
3	1	20		LTG	ATRIUM	2.60	1.67	LTG –	ATRIUM		20	1	4	
5	1	20									20	1	6	
7	1	20									20	1	8	
9	1	20									20	1	10	
11	1	20		S	PARE			SP	ARE		20	1	12	
13	1	20		S	PARE			SP	ARE		20	1	14	
15	1	20		S	PARE			SP	ARE		20	1	16	
17	1	20		S	PARE			SP	ARE		20	1	18	
19	1	20		S	PARE			SP	ARE		20	1	20	
21	1	-		SPACE &	PROVISIONS			SPACE &	PROVISIONS		-	1	22	
23	1	-		SPACE &	PROVISIONS			SPACE &	PROVISIONS		-	1	24	
25	1	-		SPACE &	PROVISIONS			SPACE &	PROVISIONS		-	1	26	
27	1	-		SPACE &	PROVISIONS			SPACE &	PROVISIONS		-	1	28	
29	1	-		SPACE &	PROVISIONS			SPACE &	PROVISIONS		-	1	30	

REFER TO NEW PANELBOARD, GENERAL AND		
SCHEDULE NOTES FOR ADDITIONAL INFORMATION		

 Table 23
 As-designed
 Panel
 HLP4S2

Electrical Depths

New Haven, CT

Lighting Electrical Option

PANEL	ID:	HLP4N			MAIN:	100A-3	P		VOLTAGE:		480Y/	277V,3	ø,4W
SECTIO	N:	1 OF 1	1		BUS RATING	225A			LOAD (KVA):		36.8K	VA 🛛	
POLES	:	30			AISC RATING	14,000			MOUNTING:		SURFA	CE	
OTES	:												
	СКТ	/BKR		LOAD D	ESCRIPTION	LOAD KVA	LOAD KVA	LOAD DE	SCRIPTION		CKT/	BKR	
#	POLE	TRIP AMPS	NOTES							NOTES	TRIP AMPS	POLE	#
1	1	20			ENCE LABS 16&418	2.87	2.95		NCE LABS 1&419		20	1	2
3	1	20			ENCE LABS 22&424	2.95	1.52	LTG-OFFICE	s & Toilets		20	1	4
5	1	20		LTG-CORR	IDOR #G400.1	1.60	1.80		NCE LAB		20	1	6
7	1	20		LTG-CORR	IDOR #G400.1	1.60	1.50		ASSRM 1 &402		20	1	8
9	1	20			ENCE LABS 01&405	3.10	1.90		INCE LAB		20	1	10
11	1	20		LTG-SCIEN	CE LAB #F406	2.95	1.00	LTG-CORRIE	OOR #E400.1		20	1	12
13	1	20		LTG	-ROOF	2.0	2.0	LTG-A	TRIUM		20	1	14
15	1	20		LTG-	-ATRIUM	3.0	1.0	EXII	SIGNS		20	1	16
17	1	20		LTG-UND	ER CABINET	1.0	1.0	LTG-UNDE	R CABINET		20	1	18
19	1	20		LTG-UND	ER CABINET	1.0	1.0	LTG-UNDE	R CABINET		20	1	20
21													22
23	1	20		S	PARE			SP	ARE		20	1	24
25	1	20		S	PARE			SP	ARE		20	1	26
27	1	20		S	PARE			SP	ARE		20	1	28
29	1	20		S	PARE			SP	ARE		20	1	30
				GENERAL A		-	-						
CHED	ULE NO	TES FO	R ADDIT	IONAL INFORM	ATION								

Table 24 As-designed Panel HLP4N

SIZE/TYPE BUS: SIZE/TYPE MAIN:		4,4W		PANEL T IEL LOCATI EL MOUNTI	ON:	Sou	uth T	ower		OPTIONS:	MIN. C/B AIC: 10K OPTIONS: PROVIDE FEED FOR PANELBOA			
DESCRIPTION	LOCATION	LOAD (WATTS)		POS NO	٨		0	POS NO	C/D SIZE	LOAD (MATTS)		DESCRIPTION		
LTG ATRIUM		2850	20A/1P	1	*			2	20A/1P	3420		LTG ATRIUM		
LTO SKILLO LAD		22.52	ZUMIT	5				4	ZUMITE	1405		LTO OKILLO LAD		
LTG CORRIDOR		475	20A/1P	5			*	6	20A/1P	0		0		
0		0	20A/1P	7	*			8	20A/1P	0		0		
0	0	0	20A/1P	9		*		10	20A/1P	0		0		
0		0	20A/1P	11			•	12	20A/1P	0		0		
SPARE		3340	20A/1P	13	*			14	20A/1P	3340		SPARE		
SPARE		3340	20A/1P	15		*		16	20A/1P	3340		SPARE		
SPARE		3340	20A/1P	17		1	*	18	20A/1P	3340		SPARE		
SPARE	1	3340	20A/1P	19	*			20	20A/1P	3340		SPARE		
SPARE		3340	20A/1P	21		*		22	20A/1P	3340		SPARE		
0		0	20A/1P	23			*	24	20A/1P	0		0		
		0	20A/1P	25	*			26	20A/1P	0				
	()	0	20A/1P	27		*		28	20A/1P	0				
		0	20A/1P	29			*	30	20A/1P	0				
	1	0	20A/1P	31	*			32	20A/1P	0				
		0	20A/1P	33		*		34	20A/1P	0				
i i i i i i i i i i i i i i i i i i i		0	20A/1P	35			*	36	20A/1P	0				
		0	20A/1P	37	*			38	20A/1P	0				
2		0	20A/1P	39		*		40	20A/1P	0				
	<u> </u>	0	20A/1P	41			*	42	20A/1P	0				
ONNECTED LOAD	(KW) - A	19.63								TOTAL DESIGN	LOAD (KW)	52.6		
ONNECTED LOAD	(KW) - B	17.07								POWER FACTO	R	0.9		
CONNECTED LOAD		7.16								TOTAL DESIGN		6		

Table 25 Re-designed panel HLP4S1

New Haven, CT

Electrical Depths

VOLTAGE: SIZE/TYPE BUS: SIZE/TYPE MAIN:		H,4VV		PANEL T IEL LOCATI EL MOUNTI	ON:	Sou	th T	ower				D THROUGH LUGS DARD 1L1B			
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS NO	A	R	С	POS NO	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION			
LTG ATRIUM		2470	20A/1P	1	•			2	20A/1P	1330		LTG ATRIUM			
LTO OKILLO LAD		2252	201417	0				4	2010/17	1 100		LTO OKILLO LAD			
LTG CORRIDOR		475	20A/1P	5			*	6	20A/1P	0		0			
0		0	20A/1P	7	*			8	20A/1P	0		0			
0	0	0	20A/1P	9		*		10	20A/1P	0		0			
0		0	20A/1P	11			*	12	20A/1P	0		0			
SPARE		3340	20A/1P	13	•			14	20A/1P	3340		SPARE			
SPARE		3340	20A/1P	15		*		16	20A/1P	3340		SPARE			
SPARE		3340	20A/1P	17			*	18	20A/1P	3340		SPARE			
SPARE		3340	20A/1P	19	*			20	20A/1P	3340		SPARE			
SPARE		3340	20A/1P	21		*		22	20A/1P	3340		SPARE			
0		0	20A/1P	23		12-2	*	24	20A/1P	0		0			
		0	20A/1P	25	*			26	20A/1P	0					
		0	20A/1P	27		*		28	20A/1P	0					
		0	20A/1P	29			*	30	20A/1P	0					
		0	20A/1P	31	*			32	20A/1P	0					
		0	20A/1P	33		*		34	20A/1P	0					
		0	20A/1P	35			*	36	20A/1P	0					
		0	20A/1P	37	*			38	20A/1P	0					
		0	20A/1P	39		*		40	20A/1P	0					
		0	20A/1P	41		· · · · ·	*	42	20A/1P	0					
CONNECTED LOAD) (KW) - A	17.16								TOTAL DESIGN	LOAD (KW)	49.6			
CONNECTED LOAD) (KW) - B	17.07								POWER FACTO	R	0.9			
CONNECTED LOAD	KMA C	7.16								TOTAL DESIGN	LOAD (AMPS)	(

Table 26 Re-designed panel HLP4S2

	208Y/120V,3P	H,4W	1046-001	PANEL T						MIN. C/B AIC:				
SIZE/TYPE BUS:	225A		PAN	IEL LOCATI	ON:	Sou	th T	ower		OPTIONS:	PROVIDE FEED	D THROUGH LUGS		
SIZE/TYPE MAIN:	125A/3P C/B		PAN	EL MOUNTI	NG:	SUF	RFA	CE			DARD 1L1B			
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	Α	в	С	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION		
TG SCIENCE LABS		2727	20A/1P	1	*			2	20A/1P	2803		LTG SCIENCE LAB		
TG SCIENCE LABS		2803	20A/1P	3		*		4	20A/1P	1444		OFFICES AND TO		
LTG CORRIDOR		1520	20A/1P	5			*	6	20A/1P	1710		LTG SCIENCE LAB		
LTG CORRIDOR		1520	20A/1P	7	*			8	20A/1P	1425		LTG CLASSROOM		
TG SCIENCE LABS	0	2945	20A/1P	9		*		10	20A/1P	1805		LTG SCIENCE LAB		
TG SCIENCE LABS		2803	20A/1P	11	î		*	12	20A/1P	950		LTG CORRIDOR		
LTOROOF		1000	20/011	10	*			14	20A/1P	0		LTG ATRIUM		
LTG ATRIUM		2850	20A/1P	15		*		16	20A/1P	950		EXIT SIGNS		
LTO UNDER OAD		950	20A/1P	17			*	18	20A/1P	950		LTG UNDER CAB		
LTG UNDER CAB		950	20A/1P	19	*			20	20A/1P	950		LTG UNDER CAB		
SPARE		3340	20A/1P	21		*		22	20A/1P	3340		SPARE		
SPARE		3340	20A/1P	23	2.11		*	24	20A/1P	3340		SPARE		
SPARE		3340	20A/1P	25	*			26	20A/1P	3340		SPARE		
SPARE		3340	20A/1P	27		*		28	20A/1P	3340		SPARE		
		0	20A/1P	29			*	30	20A/1P	0				
		0	20A/1P	31	*			32	20A/1P	0				
		0	20A/1P	33		*		34	20A/1P	0				
		0	20A/1P	35			*	36	20A/1P	0				
()		0	20A/1P	37	*			38	20A/1P	0				
		0	20A/1P	39		*		40	20A/1P	0				
		0	20A/1P	41			*	42	20A/1P	0				
CONNECTED LOAD) (KW) - A	18.95								TOTAL DESIGN	LOAD (KW)	72.8		
CONNECTED LOAD	(KW) - B	26.16								POWER FACTO	R	0.9		
CONNECTED LOAD		15.56								TOTAL DESIGN	LOAD (AMDE)	9		

 Table 27 Re-designed panel HLP4SN

Sizes for the Feeders serving these panels and the branch circuits serving lighting loads can be found below in Table 29.

PANEL	CCT	MAX AMPACITY	TYPE	# AND BRANCH CCT SIZE	# AND GROUND SIZE	CONDUIT SIZE
HLP4S1	1	20	THWN	(2) # 12 AWG	(1) # 8 AWG	3/4" EMT
HLP4S1	2	20	THWN	(2) # 12 AWG	(1) # 8 AWG	3/4" EMT
HLP4S2	3	20	THWN	(2) # 12 AWG	(1) # 8 AWG	3/4" EMT
HLP4S2	4	20	THWN	(2) # 12 AWG	(1) # 8 AWG	3/4" EMT
HLP4SN	15	20	THWN	(2) # 12 AWG	(1) # 8 AWG	3/4" EMT

FEEDER SIZE					
PANEL	CB RATING (AMPS)	TYPE	# AND SIZE OF CCC	# AND GROUND SIZE	CONDUIT SIZE
HLP4S1	100	TH₩N	(4) #3 AWG	(1) # 6 AWG	1-1/4" EMT
HLP4S2	100	THWN	(4) #3 AWG	(1) # 6 AWG	1-1/4" EMT
HLP4SN	125	THWN	(4) #1 AWG	(1) # 4 AWG	1-1/4" EMT

Table 28 Feeder and Branch Circuit Sizing for SG Panels

Lighting Electrical Option

Final Report Electrical Depths

Gateway Community College

New Haven, CT

able 310.16 hrough 90°C taceway, Cab	Allowable Ampa (140°F Through de, or Earth (Di	rectly Buried), Ba	l Conductors Rate re Than Three Cur sed on Ambient T	emperature of 3	0°C (86°F)		
		Tempera	ture Rating of Cond	uctor [See Table 3	(10.13(A).)	208C (1049E)	
-	60°C (140°F)	75°C (167°F)	90°C (194°F)	60°C (140°F)	75°C (167°F)	90°C (194°F)	
	Types TW, UF	Types RHW, THHW, THW, THWN, XHHW, USE, ZW	Types TBS, SA, SIS, FEP, FEPB, MI, RHH, RHW- 2, THHN, THHW, THW-2, THWN-2, USE- 2, XHH, XHHW, XHHW-2, ZW-2	Types TW, UF	Types RHW, THHW, THW, THWN, XHHW, USE	Types TBS, SA, SIS, THHN, THHW, THW-2, THWN-2, RHH, RHW-2, USE-2, XHH, XHHW, XHHW-2, ZW-2	Size AWGet
Size AWG or kemil	434-00-0	COPPER		ALUMINUM	OR COPPER-CLA	D ALUMINUM	kemi
18		_	14	-	-	-	
18 16		-	18			_	
14*	20 25	20 25	30	20	20	25 35	
12 ^a 10 ^a	30	35	40	25 30	30 40	55 45	
8	40	50	55	40	50	60	6
6 4	55 70	65 85	95	55	65	75 85	* 33
4	85	100	110	65 75	75	100	2
2	95 110	115	130 150	85	100	115	1
1/0	125	150	170	100	120 135	135 150	1.0
2/0	145	175	195 225	115 130	155	175	30
3/0	165 195	200 230	225 260	150	180	205	4/0
250	215	255	290	170	205	230 255	25) 300
300	240	285	320 350	190 210	250	280	350
350	260 280	310	380	225	270	305 350	400
400 500	320	380	430	260	310	385	500
600	355	420	475 520	285 310	375	420	700
700	385 400	460 475	535	320	385	435 450	750
750 800	410	490	555	330 355	395 425	450	900
900	435	520	585	375	445	500	100
1000	455 495	545 590	615	405	485	545 585	125
1250 1500	520	625	705	435 455	520 545	615	175
1750	545 560	650 665	735	433	560	630	200
2000	300		CORRECT	ION FACTORS	1		
Ambient	For ambient to	emperatures other th	nan 30°C (86°F), mult		ampacities shown abo	ove by the appropria	te Am Tem
Temp. (°C)		1.05	1.04	1.08	1.05	1.04	7(
21-25	1.08	1.00	1.00	1.00	1.00	1.00	7
26-30	0.91	0.94	0.96	0.91	0.94	0.96	8
31-35	0.91	0.88	0.91	0.82	0.88	0.91	9
41-45	0.82	0.82	0.87	0.71	0.82	0.87	10
41-43	0.58	0.75	0.82	0.58	0.75	0.82	11
51-55	0.41	0.67	0.76	0.41	0.67	0.76	12
56-60	-	0.58	0.71		0.58	0.71	12
61-70		0.33	0.58	-	0.33		19
71-80		-	0.41	-	-	0.41	1

Table 29 NEC Ground Sizing Chart

Table 30 NEC Wire Sizing Chart

NOTE: Feeder, branch, and ground sizes are from Article 310 and 322 of NEC 2008.

Bradley Sisenwain Lighting Electrical Option **Final Report** Electrical Depths

Efficient Transformer Analysis

As an added aim at saving energy, I researched the savings that could be produced by replacing the current transformers used with energy efficient transformers by Powersmiths. To analyze this change I used the supplied The Powersmiths Energy Savings Payback Calculator (see Table 31).

Note #1:

Because GCC is a Community College I am assuming that it is under operation 250 days out of the year. Additionally, 24hrs of operation per day and 35% of load under these normal conditions is based off of an article from MGM Transformer Company (5701 SMITHWAY STREET CITY OF COMMERCE, CALIF. 90040) which states "Studies sponsored by the Environmental Protection Agency (EPA) show that the typical loading of low voltage (600V and below) drytype distribution transformers averages around 35% of the transformers full load rating over a 24 hour period."

Lighting Electrical Option

Final Report Electrical Depths

Note #2:

The utility rate of .201 \$/kWh is based off the GST Rate supplied by The United Illuminating Company. Below in Table 13, one will notice the two summer and two winter rates at the bottom. An average of these rates follows:

 $\frac{c}{kWh} = \frac{23.6778 + 17.4085 + 21.8372 + 17.4085}{4} = 20.083$ $\frac{\$}{kWh} = \frac{20.083}{100} = .201$

Gatway Community C	ollege - Ele	ctrical Rate	COORD ADJOCK-and Development	
Based on GST Rate from The	United Illur	ninating Com	pany	
July-December	On Peak	6pm-10am Off peak		
	c/KWhr	c/KWhr	\$	
1. Standard Service Generation	14,2994	12.2994		
2. Delivery Charges				
System benefits	0.1973	0.1973	35	
	0.1975	0.1973		
Renewable Energy Charge	0.3	0.3		
Non Bypassable FMCC	0.4678	0.4678		
Non Dypassable 1 MOO	0.4010	0.4010		·····
3.Competetive Transition Assesment(CTA)				
Demand Rate Charge	1.5222	1.5222		
4. Transmission Charge	2.0474	2.0474		
Sub-total 1-4	18.9341	16.9341		
5. Where Demand Is Billed				
Basic Service Charge			60.42	
Summer: June-September			00.42	
Demand Charge				
On Peak Hours			3.35	per KW
Off Peak Hours Of Excess KW			1.67	per KW
Charge per KWhr				
On Peak Hours	4.7437	· · · ·		
Off Peak Hours	4.(43)	0.759		
Chi i Gui i i G		0.100		-
Winter: October -May				+
Demand Charge			<i>i</i>	10.000.00
On Peak Hours			1.84	per KW
Off Peak Hours Of Excess KW			1.66	per KW
Charge per KWhr				
On Peak Hours	2.9031			
Off Peak Hours		0.4744		
Statement and the second se	00.0770	47.4005		
Summer	23.6778	17.4085		
Winter	21.8372	17.4085		

Table 32 Utility Rates for GCC

Lighting Electrical Option

Electrical Depths

New Haven, CT

meplate Linear efficiency (normal op hrs	3)	97.8% %el	ectronics or current. THD	30.0%
Iculated operating efficiency		97.2%		
ansformer kW Losses (Normal Operation))	17.0 kW		
atus quo Efficiency (Outside op. hrs)		97.8%		Note #3
ansformer kW Losses (Outside op. hrs)		0.0 kW		
nual addititional KVVh from transformers		101,743 kWh		
nual Cost of Transformer Losses	\$	22,671		
C System Performance (KVV/ton)		0.76		
Iditional Tons of Cooling (on peak)		4.82 tons		
inual addititional K/Vh from A/C		21,924 kWh		Note #4
nual Cost of Associated A/C	\$	4,885		NULE #4
mmary with Status Quo Transformer				
inual Cost of feeding Building Load	\$	775,616		
inual Cost of Transformer Losses	\$	22,671		
inual Cost of Associated A/C	\$	4,885		
ectrical Bill (Status Quo Transformer)	\$	803,172		
PORTANT:Bγ∎si∎g the ESP Calc∎tator™,γo∎ are a	gneeing the T	ERMS OF USE section on	page 3 Doctor	RSMĨTHS

Table 33 Powersmiths Calculation Cont.

Note #3:

The Nameplate Efficiency (normal and outside normal hours of operation) was found by once again averaging the efficiencies of assumed transformers. Since the actual efficiencies are not available to me right now, I checked the specification for the original transformer types and they are as follows:

The specification (Section 16461) calls out the following:

DISTRIBUTION TRANSFORMERS
Comply with NEMA Standard TP-1-1996, and list and label as complying with UL 1561.
B. Provide transformers that are constructed to withstand seismic forces specified in Division 16 Section "Vibration and Seismic Controls for Electrical Systems."
C. Cores: One leg per phase.
D. Enclosure: Ventilated, NEMA 250, Type 2.
1. Core and coil shall be encapsulated within resin compound, sealing out moisture and air.

Figure 78 Transformer Specification

Bradley Sisenwain	
Lighting Electrical Option	

Final Report Electrical Depths

Knowing that the transformers must comply with the NEMA Standard TP-11 found the following chart (again from MGM transformer Company):

The following table lists the NEMA TP-1 minimum efficiency levels for low voltage dry type distribution transformers: Single-Phase **Three-Phase** Efficiency Efficiency Rated Minimum Rated Minimum Capacity Efficiency Capacity Efficiency (kVA) AVA (%) 10% 15 97.7 15 97.0 25 37.5 98.0 30 97.5 98.2 45 977 50 98.3 75 98.0 75 98.5 112.5 98.2 100 98.6 150 98.3 167 98.7 225 98.5 300 98.6 500 98.7 750 98.8

Figure 79 NEMA TP-1 Minimum Efficiency Dry Type

Size kVA	Number of Transformers	Minimum Efficiency
15	4	97
30	2	97.5
75	19	98
112.5	1	98.2
	Avg Efficiency	97.8

Table 34 Average NEMA TP-1 Efficiency

Note #4:

To assess the Air Conditioning system performance (kW/ton) I looked at the HVAC schedules supplied to me by BVH Engineering.

	WATER COOLED CONDENSER									
TAG	EWT (۴)	LWT (۴)	GPM	MAX WPD (FT)	PASSES	FOULING	WATER WORKING PRESSURE (PSIG)	FULL LOAD (KW/TON)	DESIGN NPLV (KW/TON)	V OPERATING WEIGHT (LBS)
CH-1	85	95	900	7.8	2	.00025		0.659	0.592	21065
CH-2	85	95	900	7.8	2	.00025		0.659	0.592	21065
			WATER	COOLED	CONDENS	ER				
TAG	EWT (۴)	LWT (۴)	GPM	MAX WPD (FT)	PASSES	FOULING	WATER WORKING PRESSURE (PSIG)			SIGN NPLV (W/TON)
CH-1	80.00	86.70	900	7.9	2	.00025		0.858		0.924
CH-2	80.00	86.70	900	7.9	2	.00025		0.858		0.924

By averaging the full load kW/ton for the Centrifugal Water Chiller I found the value that I would use in the calculation:

Electrical Depths

Powersmiths Toll Free : 1-800-747-9627 or (905) 791-1493	Page 2	ESP for LEED C Energy Savings Payback Calc	
Using Powersmiths instead of status quo Powersmiths Efficiency (Normal Operation) Powersmiths kW Losses (Normal Operation) Powersmiths Efficiency (Outside op. hrs) Transformer kW Losses (Outside op. hrs) Annual addititional kWh from transformers	98.7% 7.7 98.4%	k₩ k/V	Note #5
Annual Cost of Powersmiths Losses	\$ 10,246		
Additional Tons of Cooling (on peak) Annual addititional kWh from A/C Annual Cost of Associated A/C	2.18 9,909 \$ 2,208		
Comparing Status Quo & Powersmiths			
	Status Quo	Powersmiths	2
Annual Cost of feeding Building Load Annual Cost of Transformer Losses	\$ 775,616 \$ 22,671	\$ 775,616 \$ 10,246	-
Annual Cost of Associated A/C	\$ 4,885	\$ 2.208	Reduction
Annual estimated Electrical Bill	\$ 803,172	\$ 788,070	2%
Peak kW reduction (normal op hours) Annual kWh reduction Reduction in Air Conditioning Load (on peak)	11.3 67,775 2.64	kWh	
Cost Analysis (calc)			
Energy Cost Escalation (above inflation)	4.0%		
Annual Power Quality Benefit	\$ -		
	Annual	Life Cycle Operating	Cost & Savings
	Operating Cost	20 years	32 years
Status Quo Transformers	\$27,557	\$1,207,600	\$3,093,450
Powersmiths Transformers	\$12,454	\$545,781	\$1,398,100
Savings with Powersmiths	\$15,102	\$661,819	\$1,695,349
Cost	Cost		
Powersmiths Transformers	\$112,281		Note #6
Status Quo Transformers	\$89,825		
Payback on total cost	1.49	years	current kWh rate:
Cost of Energy Savings	\$ 0.010		\$0.201
Cost - Benefit Ratio	19.4	times less to save a kWh th	an to buy a kWh
Leasing Option	60 Month Term	48 Month Term	36 Month Term
Total Annual Leasing Payments	\$28,389	\$34,628	\$44,059
Net Annual Cost with savings	\$13,287	\$19,525	\$28,957

Table 36 Powersmiths Calculation Cont.

Note #5:

The Nameplate Efficiency (normal and outside normal hours of operation) of the Energy Efficient Transformers was found by once again averaging the efficiencies. Since the actual efficiencies of Powersmiths Transformers are not available to me right now, I used Cooper Energy Efficient Transformers to find the average efficiency:

Electrical Depths

Lighting Electrical Option

Reference Condition	Temperature	% of Nameplate Load		
Load Loss	55°C	50%		
No-Load Loss	20°C	50%		
kVA	Single-F	hase Efficiency		
10		98.4		
15		98.6		
25	-	98.7		
37.5		98.8		
50	98.9			
kVA	Three-Phase Efficiency			
45	98.6			
75	98.7			
112.5		98.8		
150		98.9		
225		99.0		
300		99.0		
500		99.1		
750		99.2		
1000	99.2			
1500		99.3		
2000		99.4		
2500		99.4		

COOPER Power Systems

1045 Hickory Street Pewaukee, WI 53072 USA www.cooperpower.com

Note #5 Cont.: Using the highlighted efficiencies I found the average:

Table 37 NEMA Class 1 Efficiency Levels for Liquid-filled Distribution

Size kVA	Number of Transformers	Minimum Efficiency
15	4	98.6
30	2	98.7 (assumed)
75	19	98.7
112.5	1	98.8
	Avg Efficiency	98.7

Besides the energy saving effects of these transformers, Cooper also claims that they "have high fire point fluid, providing fire safety benefits and a projected life well beyond that of a traditional mineral oil transformer. Envirotran EF transformers are available to meet the nationally recognized NEMA TP 1 efficiency standard, which provides a highly efficient, cost-effective option."

Note #6:

Equipment prices for standard transformers were assessed using RS Means 2009 version. Information follows:

Transformer Type	Price (\$)
(4) 15 kVA (Ventilated)	1,825
(2) 30 kVA (Ventilated)	2,125
(19) 75 kVA (Ventilated)	3,850
(112.5) 112.5 kVA (Ventilated)	5,125
Total	\$ 89,825

Final Report Electrical Depths

New Haven, CT

Note #6 Cont.:

Equipment prices for energy efficient transformers were assessed by adding 25% to the price of the standard transformers.

In closing, the following benefits were found:

Cost Analysis (calc)			
Energy Cost Escalation (above inflation)	4.0%		
Annual Power Quality Benefit	\$ -		
	Annual	Life Cycle Operating	g Cost & Savings
	Operating Cost	20 years	32 years
Status Quo Transformers	\$27,557	\$1,207,600	\$3,093,450
Powersmiths Transformers	\$12,454	\$545,781	\$1,398,100
Savings with Powersmiths	\$15,102	\$661,819	\$1,695,349
Cost	Cost		
Powersmiths Transformers	\$112,281		
Status Quo Transformers	\$89,825		
Payback on total cost	1.49	years	current kWh rate:
Cost of Energy Savings	\$ 0.010	/kWh	\$0.201
Cost - Benefit Ratio	19.4	times less to save a kWh t	han to buy a kWh
Leasing Option	60 Month Term	48 Month Term	36 Month Term
Total Annual Leasing Payments	\$28,389	\$34,628	\$44,059
Net Annual Cost with savings	\$13,287	\$19,525	\$28,957
Summary of Environmental Benefits			
Annual Reduction in Greenhouse Gases (per EPA)		Equival	
5		9	Acres trees planted
16		7	Car Emissions
39		7	homes heated
16			
IMPORTANT: By using the ESP Calculator™, you are ag Powersmiths International Corp. is a licensed user. Cont		ction on page 3 PO	WERSMITHS
Page 2 of 3 © Power Quality Institute 1998-2007, All			

Table 38 Total Savings by Switching to Energy Efficient Transformers

Total annual cost savings totaled \$15,102 and the payback period was only 1.5 years. Additional environmental savings can be seen above in Table 19. Taking these saving into account, I would strongly recommend that Gateway Community College switch to Cooper Liquid-filled Envirotran EF Transformers.

Final Report Electrical Depths

Photovoltaic Analysis

For my Depth investigation I will be analyzing the current Photovoltaic array used in GCC as well as incorporating a redesign (and analysis) into my ongoing daylight analysis and study. The current array totals 448 PV units which are located above the 5th story on the roof. Please see the following Drawings (Figures 3 and 4) for the current layout, and the Spec sheet (Figure 5) for the Sanyo HIT Double 190 product data.

Figure 80 PV Layout A

Bradley Sisenwain

Final Report

Lighting Electrical Option

Electrical Depths

New Haven, CT

As a LEED GOLD rated building, it was not a surprise that GCC already was interested in incorporating photovoltaic panels into the new college campus. The current system is mounted by steel channel to the top of the Atrium roof. The array totals 448 panels of which the specification is listed later in this section (see pg. ____).

To analyze the current system, I used a two methods. To start, I used AGI to test whether the PV array was receiving direct sunlight consistently throughout the three test dates (March 21st, June 21st, and December 21st—all at 8am, noon, and 4pm).

Figure 82 Daylight Exposure Study of GCC

From this model I concluded that the amount of shadow created from the neighboring buildings would reduce the existing panel efficiency throughout the year (and especially during the winter months when the sun is at a lower profile angle and shadows are larger). An area (as marked with red box) would be beneficial to place a new array, due to the longer exposure to sun light especially in hours soon after noon.

I then used RET Screen to analyze the current system's payback period. On the next page, I have noted the inputs I used to run the as-designed analysis.

Bradley Sisenwain		Final Report	Gateway Community College 103
Lighting Electrical Option		Electrical Depths	New Haven, CT
RETScreen Energy Model - Power project			E
Proposed case power system			Incremental initial costs
Technology		Photovoltaic	
Analysis type	•	Method 1 Method 2	
Resource assessment			

Fixed

15.0 45.0

Daily solar radiation

horizontal

kWh/m²/d

1.88

2.67

3.66

4.68

5.43

5.89

5.83

5.18

4.19

3.06

1.95

1.56 3.84

1.40 1.48

poly-Si 85.10

Sanyo HIT Double 190

18.8%

45

0.40%

453

5.0%

96.0%

100.0

5.0%

14.3%

106.343

Daily solar

radiation - tilted

kWh/m²/d

2.31

3.06 3.96

4.85

5 4 5

5.84

5.81 5.30

4.45 3.42

2.32

1.93 4.06

Electricity export

rate

\$/MWh 218.4

218.4

218.4

236.8

236.8 236.8 236.8

236.8 236.8 218.4

218.4

218.4

230.07

8 unit(s)

Note #1

Note #3

Electricity

exported to grid

MWh 5.539

6.569

9.181

10.589

11.998 12.140

12.304

11.243

9.335 7.647

5.196

4.602 106.343

702,912

Note #2

\$

9

Month

January

February March

April May

June

July

August

September October

November

December

Annual

MWh/m²

MWh/m²

k₩

% °C

%/°C

m²

%

%

kW

%

%

MWh

Show data

Solar tracking mode

Slope Azimuth

Gatewway Community College

Annual solar radiation - horizontal

Nominal operating cell temperature Temperature coefficient

Annual solar radiation - tilted

Photovoltaic Type Power capacity

Manufacturer Model

Solar collector area

Miscellaneous losses

Miscellaneous losses

Electricity exported to grid

Efficiency

Inverter

Efficiency

Capacity

Summary Capacity factor

Note #1: 85.1 kW production capacity is calculated by multiplying 190W (production) by 448 (number of units). Note #2: \$702,912 initial cost is based on a suggested list price of \$ 1,569 supplied by Mona Rotkopf, Dealer Sales Manager for SunWize Technologies Note #3: Other Properties assumed

Bradley Sisenwain

Final Report

Lighting Electrical Option

Electrical Depths

In the output above (given by RET Screen) the simple payback period is approximately 25 years. While this time frame is somewhat acceptable for an education facility that has potential to be in operation for a long period of time, it was my intention to decrease the payback period as much as possible while also achieving the following:

- Reducing the installation time and cost by removing the PV system from the highest roof and integrating new panels into the lower roofs
- Reducing the amount of materials needed to support the system; therefore reducing the structure of the Atrium roof
- Increasing the accessibility of the modules for maintenance
- Increasing the exposure to sun by removing from the high roof which is exposed to longer periods of shade

To achieve these criteria I utilized a photovoltaic system that could be incorporated as a roofing membrane. By using this product I was not only replacing with a system that was more accessible, but one that could replace building material and serve as multiple features of the building. Applied Solar is the manufacturer and the product name is Roofing Membrane. The Membrane requires no special structure to support and doubles as the roofing membrane itself (hence the name). The data sheet also totes the high efficiency of the crystalline silicon PV cells and includes a 2D year warranty. This warranty is the same as the original Sanyo HIT Double 19D. It was an additional guideline to reduce payback to within this time frame of 2D years and have the replacement system last the full warranty without the original system surpassing it in energy production and/or savings.

The input for the new module is on the next page.

Lighting Electrical Option

Proposed case power system

Technology

Analysis type

Resource assessme Solar tracking mode Slope **Electrical Depths**

New Haven, CT

		Incremental initial cos
	Photovoltaic	
	Method 1	
0	Method 2	
_	Fixed	
•	0.0	
	45.0	

		45.0				
	Show data					
		Daily solar radiation -	Daily solar	Electricity export	Electricity	
	Month	horizontal	radiation - tilted	rate	exported to grid	
		kWh/m²/d	kWh/m²/d	\$/MWh	MWh	
	January	1.88	1.88	218.4	3.534	
	February	2.67	2.67	218.4	4.480	
	March	3.66	3.66	218.4	6.621	
	April	4.68	4.68	236.8	7.958	
	May	5.43	5.43	236.8	9.278	
	June	5.89	5.89	236.8	9.500	
	July	5.83	5.83	236.8	9.579	
	August	5.18	5.18	236.8	8.553	
	September	4.19	4.19	236.8	6.856	
	October	3.06	3.06	218.4	5.354	
	November	1.95	1.95	218.4	3.420	
	December	1.56	1.56	218.4	2.911	
	Annual	3.84	3.84	230.57	78.045	
Annual solar radiation - horizontal	MW/h/m²	1.40				
Annual solar radiation - tilted	MWh/m²	1.40				
Photovoltaic			_			
Туре		mono-Si	1			
Power capacity	kW	69.44	1		T	\$ 303,800
Manufacturer		Applied color		1		70
Model						
		Roofing Membrane		448 unit(s)		
	%	Roofing Membrane 10.0%		448 unit(s)	_ L	
Efficiency	°C	Roofing Membrane 10.0% 45	1		┑┕	
Efficiency Nominal operating cell temperature		10.0%			-, ^L	
Efficiency Nominal operating cell temperature Temperature coefficient	°C	10.0% 45		448 unit(s) Note #1	ב ר	
Efficiency Nominal operating cell temperature Temperature coefficient Solar collector area	°C %/°C	10.0% 45 0.40%			ר ב	Note #2
Efficiency Nominal operating cell temperature Temperature coefficient Solar collector area Miscellaneous losses	°C % / °C m²	10.0% 45 0.40% 694	ı ı		ב ר	Note #2
Efficiency Nominal operating cell temperature Temperature coefficient Solar collector area Miscellaneous losses Inverter	°C % / °C m²	10.0% 45 0.40% 694				Note #2
Efficiency Nominal operating cell temperature Temperature coefficient Solar collector area Miscellaneous losses Inverter Efficiency	°C % / °C m² %	10.0% 45 0.40% 694 10.0%				Note #2
Efficiency Nominal operating cell temperature Temperature coefficient Solar collector area Miscellaneous losses Inverter Efficiency Capacity	°C %√°C m² %	10.0% 45 0.40% 694 10.0% 96.0%				Note #2
Efficiency Nominal operating cell temperature Temperature coefficient Solar collector area Miscellaneous losses Inverter Efficiency Capacity Miscellaneous losses Summary	°C %/°C m² % %	10.0% 45 0.40% 694 10.0% 96.0% 100.0				Note #2
Efficiency Nominal operating cell temperature Temperature coefficient Solar collector area Miscellaneous losses Inverter Efficiency Capacity Miscellaneous losses	°C %/°C m² % %	10.0% 45 0.40% 694 10.0% 96.0% 100.0				Note #2

Note #1: 69.44 kW production capacity is calculated by multiplying 10W/ft² (installed production) by 217 (number of units). **Note #2:** \$303,800 initial cost is based on a suggested list price of \$4/W installed supplied by Len May a representative of Sun Tech Power

Note #3: Other Properties assumed

The results of this analysis are on the next page.

Bradley Sisenwain

Final Report

Lighting Electrical Option

Electrical Depths

New Haven, CT

The Membrane module had a significantly less payback period, reducing the original by seven years. Also, by the 25 year range, the Membrane system had already produced \$300,000 while the Sanyo system only produced \$100,000. The time to payback the difference of \$200,000, assuming each system continually produces the same output was found by applying this equation; where x is the number of years it would take to payback.

200,000 + 17,995(X) = 24,467(X)X = 200,000/(24,467 - 17,995)

X = 30.9 or 31 years

So, the total payback period from installation to when Sanyo fully replaces the Membrane system, assuming that neither array fails nor needs extensive maintenance, is 25 + 31 years or 56 years. Knowing this, I would strongly recommend that the owner incorporate the Membrane system that I have researched. *It is assumed that the type and price of inverters is constant when comparing the two PV systems.*

5

Electrical Depths

New Haven, CT

Figure 84 Membrane Layout on 5th floor roof

Bradley Sisenwain

Lighting Electrical Option

Final Report

Electrical Depths

New Haven, CT

Coordination Study

A protective device study helped me analyze a single path in GCC; this path was from switchboards MSBS1 through HDP1S1 through HLP1S1. The protective devices incorporated into this equipment are Molded Case Circuit Breakers and range from Cord type style CC @ 400A (switchboard feeder), type F Style F6 @ 100A (distribution panel feeder), and type JD style CJ @ 20A (lighting panel branch circuit). Please see the single line drawing E-1 below for more information.

Figure 85 Drawing E-1 Coordination Study Path

Lighting Electrical Option

Electrical Depths

New Haven, CT

On the next page, please refer to the diagram showing the trip current curves for the aforementioned circuit breaker types and styles.

In this diagram, there are little to no overlaps. In the area designated by Note 1, the 400A CB may have a slight potential to trip before the IODA. The lower limit of the type JD CB trips at a lower amperage rating than that of the higher limit of the type F CB. This break in the normal trip order (20>100>400) occurs around 1500A and .0125 seconds. The protective devices appear to operate and trip in normal order other than this overlap.

Electrical Depths

Short Circuit Analysis

For my short circuit analysis I explored the path previously shown.

			X (p.u.)	R (p.u.)	Z (p.u.) sum	l sc rms sys
		UTILITY XFMR PRIMAR'	0.1			
Ĭ	BASE KVA	10000	N			
	UTILITY KVA	100000				
	VOLTAGE	480				
$\sim\sim\sim$	UTILIT	YXFMR SECONDARY 2500 KV/	0.219240067	0.018270006	0.31976243	3 75231.66813
	Z	5.5				
	X/R	12				
	Х%	5.481002				
	R%	0.45675				
		FEEDER TO MSB-BS				
	8 Sets of (3) 4"		0.023883464	0.151513672		
	H (ft)	0				
	L	87				
	Total v	87 0.0506 TABLE 7				
	R	0.0506 TABLE 7 0.321 TABLE 7				
	(2) 500 MCM	0.021 IMULL /	0.017605794	0.013027344		
	(2) 300 MGM H (ft)	0	0.01/003/34	0.010027344		
	1	87				
	Total	87				
	X	0.0373				
	R	0.0276				
• \		MSB-BS			0.40441236	7 59484.48454
	3000A CB MSB-BS	S	1.77778E-06			
•/	Х	0.00004 DISCON CHART				
I I ●)	400A CB		3.55556E-O6			
•/	X	0.00008 DISCON CHART				
		FEEDER TO HDP1S1	0.000.000.000	0.05/5000/0		
	1 Set of (3) 4"	10 OC	0.323387587	2.051529948		
	H (ft)	18.25 129				
	L Total	129 147.25				
	Y	0.0506 TABLE 7				
	R	0.321 TABLE 7				
	1 Set (3) 500 MCM		0.238386502	0.176393229		
	H (ft)	18.25	0.100000001	0		
	L	129				
	Total	147.25				
	Х	0.0373 TABLE 7				
	R	0.0276 TABLE 7				
		HDP1S1	0.004340278		2.58276760	3 9314.140844
	100A CB					
	X	0.0001 DISCON CHART				
		HLP1S1	0.004340278		2.41073810	5 159.6607191
	20A CB					
	X	0.0001 DISCON CHART				

Table 39 Short Circuit Spreadsheet

Bradley Sisenwain

Final Report

Gateway Community College 111

Lighting Electrical Option

Electrical Depths

New Haven, CT

	FAULT CURRENT (CALCULATED)	STD BKR RATING
UTILITY XFMR SECONDARY	75232	65000
MSB-BS	59484	50000
HDPISI	9314	25000
HLPISI	160	14000

In the table shown above, it is clear to see that my calculated fault current would trip the CB protecting the utility transformer and Switchgear MSB-BS. This could mean either of two things one, my calculation is incorrect and the fault current is D.K., or two, that the protective devices on the two pieces of equipment need to be sized up.